�X_�����8������nSIt?���}О��Ob�$ ��m*��C,�|m��ߧ� P .�G��vrAQÍ�~���NSJLi챐Enc�S��L�ª���탴3�.͟޿� ���Z��zR�F~T?.�%��( \�յx(��ŐT0���V^h����tLW�"E �i >�:�ap�}K��/B���Ih �:/Z�47���Ha���H��oqt^s'4e`�����:��cNH�X��v��e���e� ���؋ ™LJ�&. ]�ϼ�s��ܚi��Ւ���-��h�%%����l������~IJ�~ڄ�%��ckoh^�f'jA"��&����nf�n����~��݉��M�n�1:=�>��9' The quantity (in the con-tinuous case – the discrete case is defined analogously) E(Xk) = Z∞ −∞ xkf(x)dx is called the kth moment of X. 0000002014 00000 n 0000023729 00000 n %%EOF startxref 0000003924 00000 n One of the problems has an accompanying video where a teaching assistant solves the same problem. Lecture 6: Discrete Random Variable Examples; Joint PMFs Video, > Download from Internet Archive (MP4 - 111MB). (.9tI��]���������&% �llc����O�Q�X�x)�Ʉ�Z w��C��Vs�}3br���%ee��s{��T��Ő�� ��=N���,�!�3��� ��S��i�V� ��G�t�^[email protected]�U�4v3���P7)��uӽ��&�r������c�2{�y���m�d��R6V%�Mt�kR"��(�OΣlk����mB�eh�q�&2�BƓ��9Xl�rq�ɨ�pXr�7��\�Wq����H�-���G���vX���>�UɃf_[֤�Qr�3-��lk�dvs�a~��՞�a��B*�2`D�%y�f�۲%i7f��Sr?y��rf dTsUa����� `(���0ux&+��`���y��z���Pj^��pBF���+��J>�ZBf��"�\e۬�X�9�����B0YK��Q#{���4=��s��C�A�f��R;���V��j�J+�2����p����Ĝ.��!4�2N\IacUe�]p�Le�+2H�1U�&%�& �ɊFC��"[.2�z���R *ȀB�4o��:�v��t�,cR%K�+G��Wk*O�u���{M`�t�" �c'�I��r�s�����o��/�����x�K�c6�+�\QlF�Uy�Y�̶f��ؑ�a %PDF-1.3 ��Rz3��60�k�-�>$����. With more than 2,400 courses available, OCW is delivering on the promise of open sharing of knowledge. There's no signup, and no start or end dates. Review the recitation problems in the PDF file below and try to solve them on your own. But note that Xand Y are not inde- ... X(x)f Y(y) for all xand y. Note that although we sayX is 3.5 on the average, we must keep in mind that our X never actually equals 3.5 (in fact, it is impossible forX to equal 3.5). 0000073670 00000 n Send to friends and colleagues. xref 0000064437 00000 n Discrete Probability Distributions Let X be a discrete random variable, and suppose that the possible values that it can assume are given by x 1, x 2, x 3, . If we defined a variable, x, as the number of heads in a single toss, then x could possibly be 1 or 0, nothing else. J��f��K���,���.��3��c��m��v>>I��[���E�A�thT�U�*�p~|86�j���u ���\� Probabilistic Systems Analysis and Applied Probability 0000001803 00000 n Modify, remix, and reuse (just remember to cite OCW as the source. 0000003743 00000 n 0000010064 00000 n 6 0 obj �h���K�J�g��K����ҋ��#�/'l�,mش'eO��V^:Y/i~3Y×V �(f&cdgayj��ШZՓ��h��jW=O+aFf��N]&_�m��ı�Yw����~/�R-�nT�e� �[email protected][email protected]�$q������ `m�����q���ZOLY#�D�@ƃ��u����yX����8�m�V��\�E���e��J`��$��Q���[8�j���Ōʯו�,�a~�վz�������^�8�����fUe���u�"{���E~� 0000011795 00000 n x�b```g``��������A���bl, [email protected]�f����x�����000*�t�{B��£�k�ˤE�3`s�46�Z�\ M���x��x���E���؏�$�%�N 4��8~D$Cqˢ3&��#C�=E�e�2Wu��̑P��&���nqYsUK���7���^���O� �)�dfR�����!�*6���a�$!/خ0f����AH The set of possible values of a random variables is known as itsRange. Review the Lecture 6: Discrete Random Variable Examples; Joint PMFs Slides (PDF) Read Sections 2.4–2.6 in the textbook; Recitation Problems and Recitation Help Videos. �p}��@i$3C�Ґx�BJHf 0000048072 00000 n . » > {���7ϱ�I��&���m�������'���}����G�O5��|J:��4�}�v$���:MRՌ �x��r=Z�iI�d���w+qTH}������~����,��~�w,5YZM�I4�C���)��ȣ`D��j\��Y�o�5��mM5�{)�T�[��u���ŵmm?A�հ=[\�mn\VW����iЇ�%�+��a�u64m��Z��Qz�q�����B���㦨�endstream 0000075910 00000 n > Download from Internet Archive (MP4 - 24MB). 0000058582 00000 n Given a random variable X, let f(x) be its pdf. Let Xdenote the length and Y denote the width. Two of the problems have an accompanying video where a teaching assistant solves the same problem. 0000001136 00000 n Massachusetts Institute of Technology. m�XF�+�m`����Il��.��5OR�栛Q� Discrete Random Variables 0000073491 00000 n 15.063 Summer 2003 1616 Continuous Random Variables A continuous random variable can take any value in some interval Example: X = time a customer spends waiting in line at the store • “Infinite” number of possible values for the random variable. 0000001824 00000 n , arranged in some order. » Made for sharing. 0000023541 00000 n gX޺���Lف�b�aL��đS ���oi+��r5x�� ��RUĹ&�H�t���Fx]����Ӳ�}yU » 0000076555 00000 n Find materials for this course in the pages linked along the left. Review the tutorial problems in the PDF file below and try to solve them on your own. x��[I���� �v�×�m�hZ�/88XXa�c^��z�Ib���������7zz ���Z�����2���-���ѿ����67�-���� �� �=�|���6�u����Zq��|�Z��٣M���M�m�p�6۳g�/w�l��2�ww�jr�1�{���Z�^�j����z�')�v�o�lR� �|>7�#���݇s�����$�$��W���f���^p�i"ińQw�0�J*$������!Aw���Ϲ���-���l2�K�wOhT� p�0��8�{�Җ3v����ҿW�z � ��;���ǥOl)���4� Example: Plastic covers for CDs (Discrete joint pmf) Measurements for the length and width of a rectangular plastic covers for CDs are rounded to the nearest mm(so they are discrete). <> Lecture 6: Discrete Random Variable Examples; Joint PMFs, Electrical Engineering and Computer Science, Probabilistic Systems Analysis and Applied Probability, Unit I: Probability Models And Discrete Random Variables, Unit IV: Laws Of Large Numbers And Inference, Lecture 6: Discrete Random Variable Examples; Joint PMFs Slides (PDF). 0000058398 00000 n S�{��T���7�_���aLA ��0 :9 1�}~�����q�HY�zᅯ��8�rx�0D1��i�������^[즨��`ُ\��VNs&{k�K'z�ﱉ�6�+�-�\��6=�[�������g���a���'&m�Ho���p�� ��'{����6���"�';X��CΨ0��u�'9�>���"~X��b��3YE�XPx,����%��)$+�U�P�` I�$�tw������_�.�VP�c0�u��6P���'�E��|���@6�uvz;�����02H�/�Yم�`�퉵�"D�{����ȕRڔ3��p�? �v]��s�Yq\�/��Dh>���Id:�Q�J'QLy� �� �p��l�����v5u� trailer Home No enrollment or registration. For every fixed value t = t0 of time, X(t0; ) is a discrete random variable. Unit I: Probability Models And Discrete Random Variables 0000065046 00000 n ��4f5�A��W�"��x����*̄��&/�4V�^����\�~�>T�p�8"�hх�����u���ubv�Qϓ��Քz�F2�����ٟ�ܝ흇Q����t/��u����JU����6�u0.8Iy�a ’������_�qd�e��e��e Flash and JavaScript are required for this feature. (b) Find a joint pmf assignment for which X and Y are not independent, but for which X2 and Y 2 are independent. %"��(�r0I_JD�7�@�))h�)�ª� � 0000022155 00000 n 0000049395 00000 n endobj Such a function, x, would be an example of a discrete random variable. Download files for later. 0000016865 00000 n 147 42 0000059918 00000 n 147 0 obj<> endobj For a discrete random process, probabilistic variable takes on only discrete values. 0000063790 00000 n 0000001694 00000 n 0000067011 00000 n Courses This is one of over 2,200 courses on OCW. Your use of the MIT OpenCourseWare site and materials is subject to our Creative Commons License and other terms of use. <<83089bf982f7624f83e29cb71bce8b4d>]>> Freely browse and use OCW materials at your own pace. �ŷMd��.P����d�v�r˿��ѹX�mR�[email protected]��>Վdep��XOd_��؄HN�¢�z�̅T �?���4�ħ���{���*�/�Ź��p�0Kr�P �2C�Y9 ��A�20�ݻ�����*���5'�����2ʖ37Ѽ(é�?�j*0fT���&m,�w��&�c��E �}y� ^v�y5"�U����F�X. Use OCW to guide your own life-long learning, or to teach others. 0000011610 00000 n 5 0 obj be described with a joint probability density function. Then X(t;H) = sin(t), X(t;T) = cos(t) defines a discrete random … %PDF-1.2 %���� Related to the probability mass function f X(x) = IP(X = x)isanotherimportantfunction called the cumulative distribution function (CDF), F X.Itisdefinedbytheformula 0000002074 00000 n > Download from Internet Archive (MP4 - 28MB), Joint Probability Mass Function (PMF) Drill 1, > Download from Internet Archive (MP4 - 57MB). 0000077221 00000 n . 0000075183 00000 n 0000032340 00000 n %�쏢 stream 0000067188 00000 n x��ZI������!��z��Y�Հ/rG��D� 1b� ��F� ������&���,���=�l�X���"_tjН��߳g��ݣW;�}��^�t���?gϺ���;R�s�Ӈ�q��v��);�Н>�}�}���q���=�q��g����7GC�#�IEO�9���,kY����Ŕ�iJp.���<=LS|pA����?�QfÁ*"���o�)�4h`�n`yT��'�jv��˂�{8,�Upd9fBZ��Y��q�������,�qB99�W�Hu����{��N��N���W���,���/д�^���QR�%Q��`�����-Hd�. MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum. 0000062955 00000 n ����I3g(A��rnh��]P��6�!��4�^9�%��7F����� �M�PPE��mm!|˥����z��H��"&0J��)��1�Ѧ] v��-�D �)�6�(�������@�>��b��fb�q,�7Eq���{�&_Y�@D1#��z�ږ��*�P��@�|��������R�b���$R�Y���tݗ>��0n����g{��._Q�I5>Ei(���W\}�vZ>T��av�ᷠ�^;�k�u� ��j��(����!�_A&/��Lj���u�I�6W�Ψ�\�/�Nñ-c(�=�p��������#�6?�� q]���p�9�h]j���;yQ����=�e��5�X�E�)�v�t�Kd�����tgA��Z��=���A��]�]ܨ�oa��tF�׻ݨ^�aS�c��~;'�b���H��G�a�� ʹk:i��x��ƽnщ�����B�%��B� ��z֪�R�H�z+�����[DS� x�7c��r�@\]�O��P;�U1����|8n��T.���L�Ly�,��������H�!x{-}����M��� �cS��]���*�����czM�f�Td��)�K��n&��)I�����~y��*�����N Had Enough Don Toliver Lyrics, Salon Price List Template, I Don't Love You Chords Acoustic, Flip Flappers Uexküll, Why Are Hanging Leg Raises So Hard, Used Guitars For Sale By Owner, Dr Nelson Veterinarian, " />

discrete random variables solved examples pdf

0000000016 00000 n Worked examples | Multiple Random Variables Example 1 Let X and Y be random variables that take on values from the set f¡1;0;1g. Discrete Random Variables: Consider our coin toss again. We could have heads or tails as possible outcomes. DISCRETE RANDOM VARIABLES 109 Remark5.3. » This random variables can only take values between 0 and 6. 0000002194 00000 n The “moment generating function” gives us a nice way of collecting to-gether all the moments of a random varaible X into a single power series (i.e. �@}��i��� -�{@e�,�U��:[�5�2�10pM��'�3̶ �|p��&��e��"Q� G����i�K�. Lecture 6. HHTTHT !3, THHTTT !2. crete random variable while one which takes on a noncountably infinite number of values is called a nondiscrete random variable. @6f���P�d������Z�˥U}� Example 6-3: Consider the coin tossing experiment with S = {H, T}. Ou��_n�pi*���u�eL�u��B}V�ڝ_�&�]�-΋W[��}����� �m�9r�;`�$�5٢7�-2YB��P]�؉I/�b&�恒uI�PC��z,#L�`†�Б:��1�����v9�x5 ���̚�������f�a���v�p�w;�A-F k5��"�6h��v�d5-�3m�'.�D�j��p��a���Ԁ3��� ��_�^�n��Yu�$�r���X��>�X_�����8������nSIt?���}О��Ob�$ ��m*��C,�|m��ߧ� P .�G��vrAQÍ�~���NSJLi챐Enc�S��L�ª���탴3�.͟޿� ���Z��zR�F~T?.�%��( \�յx(��ŐT0���V^h����tLW�"E �i >�:�ap�}K��/B���Ih �:/Z�47���Ha���H��oqt^s'4e`�����:��cNH�X��v��e���e� ���؋ ™LJ�&. ]�ϼ�s��ܚi��Ւ���-��h�%%����l������~IJ�~ڄ�%��ckoh^�f'jA"��&����nf�n����~��݉��M�n�1:=�>��9' The quantity (in the con-tinuous case – the discrete case is defined analogously) E(Xk) = Z∞ −∞ xkf(x)dx is called the kth moment of X. 0000002014 00000 n 0000023729 00000 n %%EOF startxref 0000003924 00000 n One of the problems has an accompanying video where a teaching assistant solves the same problem. Lecture 6: Discrete Random Variable Examples; Joint PMFs Video, > Download from Internet Archive (MP4 - 111MB). (.9tI��]���������&% �llc����O�Q�X�x)�Ʉ�Z w��C��Vs�}3br���%ee��s{��T��Ő�� ��=N���,�!�3��� ��S��i�V� ��G�t�^[email protected]�U�4v3���P7)��uӽ��&�r������c�2{�y���m�d��R6V%�Mt�kR"��(�OΣlk����mB�eh�q�&2�BƓ��9Xl�rq�ɨ�pXr�7��\�Wq����H�-���G���vX���>�UɃf_[֤�Qr�3-��lk�dvs�a~��՞�a��B*�2`D�%y�f�۲%i7f��Sr?y��rf dTsUa����� `(���0ux&+��`���y��z���Pj^��pBF���+��J>�ZBf��"�\e۬�X�9�����B0YK��Q#{���4=��s��C�A�f��R;���V��j�J+�2����p����Ĝ.��!4�2N\IacUe�]p�Le�+2H�1U�&%�& �ɊFC��"[.2�z���R *ȀB�4o��:�v��t�,cR%K�+G��Wk*O�u���{M`�t�" �c'�I��r�s�����o��/�����x�K�c6�+�\QlF�Uy�Y�̶f��ؑ�a %PDF-1.3 ��Rz3��60�k�-�>$����. With more than 2,400 courses available, OCW is delivering on the promise of open sharing of knowledge. There's no signup, and no start or end dates. Review the recitation problems in the PDF file below and try to solve them on your own. But note that Xand Y are not inde- ... X(x)f Y(y) for all xand y. Note that although we sayX is 3.5 on the average, we must keep in mind that our X never actually equals 3.5 (in fact, it is impossible forX to equal 3.5). 0000073670 00000 n Send to friends and colleagues. xref 0000064437 00000 n Discrete Probability Distributions Let X be a discrete random variable, and suppose that the possible values that it can assume are given by x 1, x 2, x 3, . If we defined a variable, x, as the number of heads in a single toss, then x could possibly be 1 or 0, nothing else. J��f��K���,���.��3��c��m��v>>I��[���E�A�thT�U�*�p~|86�j���u ���\� Probabilistic Systems Analysis and Applied Probability 0000001803 00000 n Modify, remix, and reuse (just remember to cite OCW as the source. 0000003743 00000 n 0000010064 00000 n 6 0 obj �h���K�J�g��K����ҋ��#�/'l�,mش'eO��V^:Y/i~3Y×V �(f&cdgayj��ШZՓ��h��jW=O+aFf��N]&_�m��ı�Yw����~/�R-�nT�e� �[email protected][email protected]�$q������ `m�����q���ZOLY#�D�@ƃ��u����yX����8�m�V��\�E���e��J`��$��Q���[8�j���Ōʯו�,�a~�վz�������^�8�����fUe���u�"{���E~� 0000011795 00000 n x�b```g``��������A���bl, [email protected]�f����x�����000*�t�{B��£�k�ˤE�3`s�46�Z�\ M���x��x���E���؏�$�%�N 4��8~D$Cqˢ3&��#C�=E�e�2Wu��̑P��&���nqYsUK���7���^���O� �)�dfR�����!�*6���a�$!/خ0f����AH The set of possible values of a random variables is known as itsRange. Review the Lecture 6: Discrete Random Variable Examples; Joint PMFs Slides (PDF) Read Sections 2.4–2.6 in the textbook; Recitation Problems and Recitation Help Videos. �p}��@i$3C�Ґx�BJHf 0000048072 00000 n . » > {���7ϱ�I��&���m�������'���}����G�O5��|J:��4�}�v$���:MRՌ �x��r=Z�iI�d���w+qTH}������~����,��~�w,5YZM�I4�C���)��ȣ`D��j\��Y�o�5��mM5�{)�T�[��u���ŵmm?A�հ=[\�mn\VW����iЇ�%�+��a�u64m��Z��Qz�q�����B���㦨�endstream 0000075910 00000 n > Download from Internet Archive (MP4 - 24MB). 0000058582 00000 n Given a random variable X, let f(x) be its pdf. Let Xdenote the length and Y denote the width. Two of the problems have an accompanying video where a teaching assistant solves the same problem. 0000001136 00000 n Massachusetts Institute of Technology. m�XF�+�m`����Il��.��5OR�栛Q� Discrete Random Variables 0000073491 00000 n 15.063 Summer 2003 1616 Continuous Random Variables A continuous random variable can take any value in some interval Example: X = time a customer spends waiting in line at the store • “Infinite” number of possible values for the random variable. 0000001824 00000 n , arranged in some order. » Made for sharing. 0000023541 00000 n gX޺���Lف�b�aL��đS ���oi+��r5x�� ��RUĹ&�H�t���Fx]����Ӳ�}yU » 0000076555 00000 n Find materials for this course in the pages linked along the left. Review the tutorial problems in the PDF file below and try to solve them on your own. x��[I���� �v�×�m�hZ�/88XXa�c^��z�Ib���������7zz ���Z�����2���-���ѿ����67�-���� �� �=�|���6�u����Zq��|�Z��٣M���M�m�p�6۳g�/w�l��2�ww�jr�1�{���Z�^�j����z�')�v�o�lR� �|>7�#���݇s�����$�$��W���f���^p�i"ińQw�0�J*$������!Aw���Ϲ���-���l2�K�wOhT� p�0��8�{�Җ3v����ҿW�z � ��;���ǥOl)���4� Example: Plastic covers for CDs (Discrete joint pmf) Measurements for the length and width of a rectangular plastic covers for CDs are rounded to the nearest mm(so they are discrete). <> Lecture 6: Discrete Random Variable Examples; Joint PMFs, Electrical Engineering and Computer Science, Probabilistic Systems Analysis and Applied Probability, Unit I: Probability Models And Discrete Random Variables, Unit IV: Laws Of Large Numbers And Inference, Lecture 6: Discrete Random Variable Examples; Joint PMFs Slides (PDF). 0000058398 00000 n S�{��T���7�_���aLA ��0 :9 1�}~�����q�HY�zᅯ��8�rx�0D1��i�������^[즨��`ُ\��VNs&{k�K'z�ﱉ�6�+�-�\��6=�[�������g���a���'&m�Ho���p�� ��'{����6���"�';X��CΨ0��u�'9�>���"~X��b��3YE�XPx,����%��)$+�U�P�` I�$�tw������_�.�VP�c0�u��6P���'�E��|���@6�uvz;�����02H�/�Yم�`�퉵�"D�{����ȕRڔ3��p�? �v]��s�Yq\�/��Dh>���Id:�Q�J'QLy� �� �p��l�����v5u� trailer Home No enrollment or registration. For every fixed value t = t0 of time, X(t0; ) is a discrete random variable. Unit I: Probability Models And Discrete Random Variables 0000065046 00000 n ��4f5�A��W�"��x����*̄��&/�4V�^����\�~�>T�p�8"�hх�����u���ubv�Qϓ��Քz�F2�����ٟ�ܝ흇Q����t/��u����JU����6�u0.8Iy�a ’������_�qd�e��e��e Flash and JavaScript are required for this feature. (b) Find a joint pmf assignment for which X and Y are not independent, but for which X2 and Y 2 are independent. %"��(�r0I_JD�7�@�))h�)�ª� � 0000022155 00000 n 0000049395 00000 n endobj Such a function, x, would be an example of a discrete random variable. Download files for later. 0000016865 00000 n 147 42 0000059918 00000 n 147 0 obj<> endobj For a discrete random process, probabilistic variable takes on only discrete values. 0000063790 00000 n 0000001694 00000 n 0000067011 00000 n Courses This is one of over 2,200 courses on OCW. Your use of the MIT OpenCourseWare site and materials is subject to our Creative Commons License and other terms of use. <<83089bf982f7624f83e29cb71bce8b4d>]>> Freely browse and use OCW materials at your own pace. �ŷMd��.P����d�v�r˿��ѹX�mR�[email protected]��>Վdep��XOd_��؄HN�¢�z�̅T �?���4�ħ���{���*�/�Ź��p�0Kr�P �2C�Y9 ��A�20�ݻ�����*���5'�����2ʖ37Ѽ(é�?�j*0fT���&m,�w��&�c��E �}y� ^v�y5"�U����F�X. Use OCW to guide your own life-long learning, or to teach others. 0000011610 00000 n 5 0 obj be described with a joint probability density function. Then X(t;H) = sin(t), X(t;T) = cos(t) defines a discrete random … %PDF-1.2 %���� Related to the probability mass function f X(x) = IP(X = x)isanotherimportantfunction called the cumulative distribution function (CDF), F X.Itisdefinedbytheformula 0000002074 00000 n > Download from Internet Archive (MP4 - 28MB), Joint Probability Mass Function (PMF) Drill 1, > Download from Internet Archive (MP4 - 57MB). 0000077221 00000 n . 0000075183 00000 n 0000032340 00000 n %�쏢 stream 0000067188 00000 n x��ZI������!��z��Y�Հ/rG��D� 1b� ��F� ������&���,���=�l�X���"_tjН��߳g��ݣW;�}��^�t���?gϺ���;R�s�Ӈ�q��v��);�Н>�}�}���q���=�q��g����7GC�#�IEO�9���,kY����Ŕ�iJp.���<=LS|pA����?�QfÁ*"���o�)�4h`�n`yT��'�jv��˂�{8,�Upd9fBZ��Y��q�������,�qB99�W�Hu����{��N��N���W���,���/д�^���QR�%Q��`�����-Hd�. MIT OpenCourseWare is a free & open publication of material from thousands of MIT courses, covering the entire MIT curriculum. 0000062955 00000 n ����I3g(A��rnh��]P��6�!��4�^9�%��7F����� �M�PPE��mm!|˥����z��H��"&0J��)��1�Ѧ] v��-�D �)�6�(�������@�>��b��fb�q,�7Eq���{�&_Y�@D1#��z�ږ��*�P��@�|��������R�b���$R�Y���tݗ>��0n����g{��._Q�I5>Ei(���W\}�vZ>T��av�ᷠ�^;�k�u� ��j��(����!�_A&/��Lj���u�I�6W�Ψ�\�/�Nñ-c(�=�p��������#�6?�� q]���p�9�h]j���;yQ����=�e��5�X�E�)�v�t�Kd�����tgA��Z��=���A��]�]ܨ�oa��tF�׻ݨ^�aS�c��~;'�b���H��G�a�� ʹk:i��x��ƽnщ�����B�%��B� ��z֪�R�H�z+�����[DS� x�7c��r�@\]�O��P;�U1����|8n��T.���L�Ly�,��������H�!x{-}����M��� �cS��]���*�����czM�f�Td��)�K��n&��)I�����~y��*�����N

Had Enough Don Toliver Lyrics, Salon Price List Template, I Don't Love You Chords Acoustic, Flip Flappers Uexküll, Why Are Hanging Leg Raises So Hard, Used Guitars For Sale By Owner, Dr Nelson Veterinarian,

Read Previous

Les indispensables pour la randonnée d’automne